E-Chem Sensor Data Model H10-19 Oxygen (O₂) Smart Sensor

Model H10-19 Oxygen sensor is an electrochemical device used for the measurement of O_2 in ambient air and is normally applied to applications for detection of low oxygen conditions in the workplace. It is designed to be used in conjunction with ATI's Model C16 portable leak detector or Models D12 or F12 gas transmitters. H10-19 sensors contain internal electronics and memory that control sensor bias and store calibration data, calibration history, and limited data log.

 O_2 sensors operate by generating a small electrical current proportional to the volumetric concentration of oxygen gas in the surrounding air. The current is the result of the reduction of oxygen on the surface of a catalytic electrode, with a resulting signal that is linear with respect to oxygen concentration. Oxygen sensors are 2-electrode sensors and operate much like a battery.

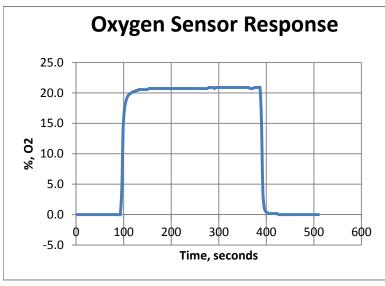
$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

The table below provides the operational and performance specifications for the H10-19 O_2 sensor. Contact ATI or your ATI local representative with questions regarding specific applications for this sensor.

Primary Response	Volume % O ₂		
Measuring Range	0.0 – 25.0% V/V		
Sensor Current	5 μA/% O ₂ Nominal		
Sensor Current Variability	3.5 – 6 μA/PPM		
Linearity	± 2%		
Response Time	$T_{50} = 10$ Seconds, $T_{90} = 15$ seconds		
Temperature Range	-30° to +55° C		
Memory	Internal e ² memory for Calibration Data and Calibration History		
Pressure Range:	- 3 to + 3 PSIG		
Pressure Variability	<0.1% per 1% change in pressure		
Operating Humidity	0-99% RH Non-condensing (Intermittent)		
	5-95% RH Non-condensing (Continuous)		
Zero Stability	\pm 0.05% O ₂ at constant temperature		
	± 0.1% PPM over ±10° C ambient temperature change		
Span Drift	< 1%/Month		
Temperature Effect on Span	See Graph		
Operating Life	> 24 Months Typical in Clean Conditions		
Storage Recommendation	Recommended maximum of 6 months for best sensor		
	performance. Store at less than 25° C in a sealed container.		
Size	1" D x 1.25" H (25 mm x 32 mm)		
Weight	17 grams		

E-Chem Sensor Data Model H10-19 O₂ Smart Sensor

H10-19 Oxygen sensors respond to very few other gases. When applying this sensor to specific applications, it is good practice to verify whether or not any potential interferences are present and might present interference issues. Note that cross-sensitivity data is approximate and based on exposures under 100 PPM. In some cases, response to other gases may not be stable or may be transient.


Gas	Symbol	Response to 1 PPM
Hydrogen Sulfide	H ₂ S	See Note 1
Nitrogen Dioxide	NO ₂	None
Sulfur Dioxide	SO ₂	None
Methyl Mercaptan	CH₃SH	See Note 1
Chlorine	Cl ₂	None
Hydrogen Cyanide	HCN	None
Ethanol (alcohol)	C ₂ H ₆ O	None
Ammonia	NH ₃	None
Hydrogen Chloride	HCI	None
Carbon Monoxide	CO	None
Carbon Dioxide	CO ₂	See Note 2
Nitric Oxide	NO	None
Hydrogen Fluoride	HF	None

Note 1: O₂ sensors can be poisoned by exposure to high levels of sulfide compounds.

Electrochemical sensors exhibit a response that is temperature dependent to a limited extent. Although the effect of temperature is not large, it is useful to be aware of the effect. Shown below is a graph showing the effect on span of changing temperature.

Shown below is a typical response time graph for an O_2 sensor. Note that this response time can become significantly slower at temperatures below -25°C.

H10–19 Technical Data Data subject to improvement without notice

Note 2: O_2 sensor output increases by about 0.1% per % of CO_2 in the ambient air.